博客
关于我
【数据结构连载一线性表】【单向循环链表】javascript
阅读量:480 次
发布时间:2019-03-06

本文共 3820 字,大约阅读时间需要 12 分钟。

function Node() {       this.data = null;    this.next = null;}function CycleLinkedList() {       this.length = 0;    this.rear = new Node();    this.rear.next = this.rear;    this.empty = function () {           return this.rear === this.rear.next    };    this.exist = function (value) {           let cur = this.rear.next;        const tail = this.rear        while (cur !== tail) {               if (cur.data === value) {                   return true;            }            cur = cur.next;        }        return false    };    this.get = function (index) {           if (index >= l.length) {               throw new Error("下标越界")        }        let cur = l.rear.next;        const tail = l.rear        let n = 0;        while (cur !== tail) {               if (n === index) {                   return cur.data            }            cur = cur.next;            n++;        }    };    this.add = function (value) {           let cur = this.rear;        const new_node = new Node();        new_node.data = value;        new_node.next = cur.next;        this.rear.next = new_node;        this.length++;    };    this.append = function (value) {           const new_node = new Node();        new_node.data = value;        let tail = this.rear;        let cur = this.rear;        while (cur.next !== tail) {               cur = cur.next;        }        new_node.next = cur.next;        cur.next = new_node;        this.length++;    };    this.show = function () {           const tail = this.rear;        let cur = this.rear.next;        let s = "";        while (cur !== tail) {               s += cur.data + " "            cur = cur.next;        }        console.log(s)    };    this.insert = function (index, value) {           let cur = this.rear;        const tail = this.rear;        let n = 0;        const new_node = new Node();        new_node.data = value;        while (cur.next !== tail) {               if (n === index) {                   new_node.next = cur.next;                cur.next = new_node;                this.length++;                return            }            cur = cur.next;            n++;        }        new_node.next = cur.next;        cur.next = new_node;        this.length++;    };    this.index = function (value) {           let cur = this.rear.next;        const tail = this.rear;        let n = 0;        while (cur !== tail) {               if (cur.data === value) {                   return n            }            cur = cur.next;            n++;        }        return -1    };    this.delete = function (index) {           if (index >= this.length) {               throw new Error("下标越界:" + index);        }        let cur = this.rear;        const tail = this.rear;        let n = 0;        while (cur.next !== tail) {               if (n === index) {                   cur.next = cur.next.next;                this.length--;            }            n++;            cur = cur.next;        }    };    this.remove = function (value) {           let cur = this.rear;        const tail = this.rear;        while (tail !== cur.next) {               if (cur.next.data === value) {                   cur.next = cur.next.next;                this.length--;                return            }            cur = cur.next;        }        throw new Error("删除数据不存在" + value);    };    this.pop = function () {           let cur = this.rear;        const tail = this.rear;        while (tail !== cur.next.next) {               cur = cur.next;        }        const data = cur.next.data;        cur.next = cur.next.next;        this.tail = cur        this.length--;        return data;    }}l = new CycleLinkedList();l.add(10)l.add(9)l.add(8)l.add(7)l.append(7)l.insert(8, 19)console.log(l.exist(19))console.log(l.index(10))l.show()console.log(l.pop())console.log(l.pop())l.show()

转载地址:http://haxdz.baihongyu.com/

你可能感兴趣的文章
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP入门(六)pyltp的介绍与使用
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
查看>>
NLP:从头开始的文本矢量化方法
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
NLTK - 停用词下载
查看>>
nmap 使用总结
查看>>
nmap 使用方法详细介绍
查看>>
nmap使用
查看>>
nmap使用实战(附nmap安装包)
查看>>
Nmap哪些想不到的姿势
查看>>
Nmap扫描教程之Nmap基础知识
查看>>
nmap指纹识别要点以及又快又准之方法
查看>>
Nmap渗透测试指南之指纹识别与探测、伺机而动
查看>>